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Abstract

Let T be a physical system consisting of two subsystems, S and 7 We prove that there
are, in the absence of superselection rules, quantum mechanical observables (called
“sensitive’), whose expectation value depends on the type of state vector (first type or
second type) describing £. This result generalizes a previous one obtained under the
restriction that the Hilbert spaces of § and 7 are two dimensional.

1. Introduction

Let a quantum mechanical system Z be given, consisting of two subsystems,
Sand 7. If Hg and Hyp are the Hilbert spaces describing, respectively, the
system § and the system 7', quantum mechanics prescribes that the Hilbert
space Hgr, associated with the system Z, is the tensor product of Hg and Hrp:

H. sT = HS ® H T
with the standard scalar product.
It follows directly from definition of tensor product of two vector spaces?

1 LN.F.N,, section of Bari.

2 Tt is useful for the following to recall the definition of tensor product of two vector
spaces: Let £, F, G be three vector spaces on the complex fieldC; we say that G is
the tensor product of E and F (denoted by E ® F) if there exists a bilinear mapping
& E x F~ G whose image spans G and such that, for all pairs of linearly independent
systems of vectors {x,} and {yﬁ} in F and F, respectively, the system of vectors
{D(xq, Y} is linearly independent in G. £ @ F always exists and is unique (up to iso-
morphisms). If (x, y) €F x Fwe put ®(x, y) =x @ y; it is trivial that ®(E x F) is not
in general, a vector space and therefore ®(E x F) + E® F. If £ and F are Hilbert spaces
the standard scalar product on F @ F makes continuous the bilinear mapping ®.
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that an element u of Hgy cannot be put, in general, in the form v @ w, where
v and w are elements of Hg and Hr, respectively.
Therefore let us introduce the following definition (Capasso et al., 1973):

Definition 1.1. A vector u € Hgyp is called vector of the first type if
there exist v € Hg, w € Hp such that u = v®w; u is called vector of
the second type if it is not a vector of the first type.

Let usput3
0= {x®y€ Hgr:x € Hg,y € Hp, lIx| =iyl =1}

Let us denote by © a statistical ensemble of identical systems Z and, intro-
duce the following definitions:

Definition 12, &is called mixture of the first type if there exists a
a family {Selre q,...m) Sk C8, & U UG, =&, such that for
every K € {1, ..., m} there exists a vector u;, € Q describing all
systems 2 € Sp-

Definition 1.3. ©is called a mixture of the second type if there exists
a vector of the second type u € Hgrp, llull = 1, describing all systems
zees.

2. Sensitive Observables

We shall prove that a mixture of the second type is observably different
from all mixtures of the first type. This statement can be put in a precise form
once the following definition is introduced (Capasso ef al., 1973).

Definition 2.1. If € is a mixture of the second type of systems Z, an
observable I" of ¥ is called sensitive for & if (T # (I for all
mixtures of the first type &' of systems 2.

This definition is meaningful because it can be shown that (Capasso et al.,
1973), if & is a mixture of the second type of systems Z, there are observables
(of Z) that are not sensitive.

We shall prove the following theorem, which clarifies the statement we
made at the beginning of this section:

3 If E is an Hilbert space we denote by (1) its scalar product and by || | the norm derived
from it.

4 We denote by (') the expectation value of the observable T' on the statistical en-
semble .
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Theorem 2.1. Let us suppose that to every Hermitian operator (on
Hg, Hy, Her) is associated one and only one observable’ (of S, T
and X, respectively). On this hypothesis we shall prove that, if Sisa
mixture of the second type of systems Z, there exists an observable
of Z sensitive for €.

Let us observe that the result contained in this theorem has been obtained
by Capasso ef al. in the paper cited under the hypothesis that Hg and Hr are
two dimensional and by the use of Bell’s inequality (Bell, 1965).

Let us prove Theorem 2.1.%

Let © be a mixture of the second type described by the vector of the second
type xg, lIxgll = 1.

Let us initially prove that

O1P,,(N <1 forall yeQ 2.0

where P, is the projector on the subspace Cx,; that is,
Pyy:x € Hop — Py (x) = (xglx)xq
Ify € Q, by Schwarz inequality:
(7 1P (1)) = 13 beo) I < Uyl lixoli? = 1 (2.2)

Let us now observe that

(1P, N #1 (2.3)
in fact, by virtue of (2.2),”

(O 1Py, (0) = D)= (I xo) 12 = Iyl lx0l1%)
= (there exists « € C, lal
=1 such that xg =ay) = (x;, € Q)

and this is in contrast with the assumption that x4 is a vector of the second
type.

Therefore from (2.2) and (2.3) we deduce that (2.1) holds.

Now let &' be a mixture of the first type of N identical systems Z; therefore,
by definition, there exists a covering {Sx}re (,...,m of &' such that for every
ke {1,..., m} there exists v € Q describing the 1y systems T ESy(Seny = N).

5 For this reason we shall identify every Hermitian operator with the observable it
represents.

6 This proof still holds if in Definition 1.2 weassume 0= {vE H o7 v vector of the first

type, e i =1} .
7 A straight calculation shows that
y|i%= 0)

i
((plxg) 12 = ssxoxsﬁ~uy112)=-(on _ Gixo)

lyu2
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By virtue of (2.1), we have

m m m
n 1y n
Prger = D 2 Pref = D - OklPry) < D 55 =1
k=1 k=1 k=1

On the other side we have
(Prpte = (0! Pyy(xg)) = llxoli = 1

Therefore, by definition, Py is a sensitive observable for &.
Preserving the notation just introduced, let us observe that, in general, we
cannot say that

0= sup (¥1Py(¥) = sup I(ylxg) 12 <1 2.9
yeg yeg

1f (2.4) holds, we have
A(G, @) = Py —(Pype 21 —0>0 2.5

for all mixtures of the first type &'; that is, A(S, &') cannot be made arbitrary
small for suitable choice of &'.
Therefore it is interesting to search vector states of the second type x¢ such

that (2.4) holds.
To this end let us distinguish two cases:

(i) Let Hg and Hy be finite dimensional, then the following theorem holds:

Theorem 2.2.1f xo € Hgp — Q. || xoll = 1, there exists yo € Q such
that

sup (plxg) 12 =1(yglxg)12
yeg
Proof. Let us initially prove that Q is compact: Let (x,®@¥Yn)nenbe
sequence of elements of the set @; therefore
VnEN ixall=lyall =1

Then, by Bolzano’s theorem, we can select from (x,),en and (Vn)nen tWO
subsequences (X, Jxen » (Fm)xen convergent to x € Hg and y € Hy, respec-
tively. On the other hand, by continuity of the bilinear mapping ® we have

Hm X @ Yoy = M @, Y} = DX, ) = X @y

Let us now observe that {|x]| = {l¥l| = 1, therefore x®y € Q; hence @ is a compact
set. Thus, by continuity of the functional f: x € Hgp —~ f(x) = (xlxo) 2, we
deduce that there exists yo € Q such that su% (ylxg)2 = I(yolxo) 12

ye
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(ii) Let us suppose that Hg and Hy are infinite dimensional and introduce
the following notations: let us denote by E the convex envelope of Q, that is,

= {Z k,—xi: 7\;‘20, Z)\iz 1 and xiEQ}
i i
and by E the closure of E, that is
E = {x € Hopl 3(Xp)nen€ EN such that n]i_{nmx,, = x}
Now we shall prove the following theorem:

Theorem 2.3. If xy € Hgp — E, llxgll = 1 we have

sup Wyixg) 2 <1 2.6)
y€E

Proof. The following implications are a straight consequence of the defini-
tions we have given:

x€E=xl<1 Q@7
xEE =
«eC, lal= 1} Tax€E (28)

Let us now consider the functional
Fy€E = f(3)=l(rixy) 2

where xo € Hgr — E, lxoll = 1, and let us prove that

VY EE: f(y)<1 (29)
Ify€E,y #0 [if y =0 obviously f() < 1], by virtue of (2.7), we have
I(rlxe) 12 <Ipli? lixoli2 <1 (2.10)

Therefore, if f(¥) = |(ylxg) 12 = 1, we obtain
I(yixg)12 =iyl ixoll 2 and fyir=1

from which
X =ay aeC, lal=1
then, by virtue of (2.8), we obtain
X0 & E

in contrast with the hyp_othesis X € Hgr — E. Therefore (2.9) holds.

Let us observe that £ is a bounded set of the Hilbert space Hgy and there-
fore it is a relatively compact set® for the weak topology; moreover E is
weakly closed.”

8 Every bounded set in a Hilbert space is weakly relatively compact: that is, its weak
closure is a compuact set for the weak topology.

g Every strongly closed convex set in a Hilbert space is weakly closed.
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Therefore E is a weakly compact set. On the other hand the functional £ is
weakly continuous and therefore, by virtue of the Weierstrass theorem, we
conclude that there exists yq € E such that

sup f(1)=1(y0) (2.11)
yeE

Hence, by (2.9) and (2.11), the inequality (2.6) holds.
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